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Abstract—In this paper, we propose a framework of maximiz-
ing quadratic submodular energy with a knapsack constraint
approximately, to solve certain computer vision problems. The
proposed submodular maximization problem can be viewed as a
generalization of the classic 0/1 knapsack problem. Importantly,
maximization of our knapsack constrained submodular energy
function can be solved via dynamic programming. We further
introduce a range-reduction step prior to dynamic programming
as a two-stage procedure for more efficient maximization. In
order to demonstrate the effectiveness of the proposed energy
function and its maximization algorithm, we apply it to two
representative computer vision tasks: image segmentation and
motion trajectory clustering. Experimental results of image
segmentation demonstrate that our method out-performs the
classic segmentation algorithms of graph cuts and random walks.
Moreover, our framework achieves better performance than
state-of-the-art methods on the motion trajectory clustering task.

Index Terms—Submodular maximization, knapsack constraint,
segmentation, trajectory clustering.

I. INTRODUCTION

Submodular function optimization is a fundamental problem
in discrete optimization, and has attracted increasing attention
over the last decade due to its popularity in the field of
artificial intelligence [21], [2], [46], [50]. Many well-studied
problems, such as non-parametric learning, kernel machines,
active learning and information gathering, involve objective
functions that are submodular. A set function f : 2V → R is
said to be submodular [11] if, and only if, it satisfies

f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ) (1)

for all subsets S, T ⊆ V . The expression f(v | S) = f({v} ∪
S) − f(S) denotes the marginal gain in adding v ∈ V − S
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to the subset S. Submodular functions satisfy the property of
diminishing returns:

f(v | S) ≥ f(v | T ), for all S ⊆ T ⊆ V. (2)

Besides diminishing returns, more and more properties of
submodular functions have been discovered gradually to help
optimize these important functions. It has been proven to be
able to get the global minimum of submodular function with-
out constraints in linear time complexity. And other algorithm
[22], [25] focus on improving its efficiency.

However, maximizing a submodular energy with or without
constraints is an NP-hard problem. Recently, a growing num-
ber of vision applications have adopted submodular maximiza-
tion, e.g. object detection [33], [17], video summarization [42],
[43] and image saliency [27], [40]. In these works, the problem
is formulated as choosing a subset S from the ground set V
with the goal of maximizing some submodular utility function
F (S). This kind of problem can be treated as submodular
maximization with a constraint, using a general form of

max
S⊆V

F (S), s.t. g(S) ≤ K (3)

where the total cost g(S) is kept to be below some ceiling K.
For object detection [33], [17], the set S represents the

selected objects, and the set V stands for all the image
proposals. For video summarization [42], [43], S is a sequence
of key frames and V is the set of all the sub-clips of the video.
Jiang et al. [27] and Zhong et al. [40] adopted the submodular
maximization to model the image saliency problem and obtain
a set of representative superpixels. Then, the saliency values
of these superpixels are transferred to the whole image.

Submodular maximization has been applied for numerous
tasks in computer vision, and we have further found that
other vision applications such as interactive segmentation and
motion trajectories clustering can also be solved with this
model. Generally, for submodular maximization problems,
the objective functions can be monotone (e.g. coverage and
entropy functions) or non-monotone (graph cuts and mutual
information). Among them, facility location [27], [33], [40]
and information theoretic [38], [31], [41], [42], are two com-
monly used models of submodular maximization in the field
of image processing and computer vision.

The facility location model is usually formulated as:

max
∑
i∈V

max
j∈S

ωij −
∑
i∈S

c(i)

s.t. S ⊆ V, |S| ≤ K
(4)
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TABLE I
THE RESTRICTIONS OF THREE SUBMODULAR MAXIMIZATION MODELS.

non-monotone cardinality constraint knapsack constraint
Facility location model (4) X X ×

Information theoretic model H(.) (5) × X ×
Information theoretic model M(.) (5) X X ×

Our model X X X

where ωij is the affinity between two elements i and j in the
ground set V , and c(i) is the cost of element i. The constraint
|S| ≤ K enforces that the selected number of elements is less
than a fixed constant K. The first term of the above objective
function encourages to find a subset S which can represent all
elements as completely as possible; the second term requires
the total cost of S be small.

The information theoretic approach is formulated as:

max l(H(S)) or max l(M(S, V \S))
s.t. S ⊆ V , |S| ≤ K

(5)

where l(·) is a non-decreasing function; H(·) and M(·)
represent entropy rate and mutual information, respectively.
The formulations of the entropy rate and mutual information
are provided in Appendix I according to [38], [42]. Using a
submodular function, its property of diminishing returns, many
researchers [31], [38], [41], [42] have proven the objective
functions in (4) and (5) are both submodular.

We propose a new framework of submodular maximization,
which enriches the practicability of submodular maximization
in computer vision. In the above formulations, both models
enforce simple cardinality constraints. Differently, the pro-
posed submodular maximization framework contains a more
general constraint: knapsack constraint. Specifically, we show
how this new constraint can be used to solve two important
vision problems: image segmentation and motion trajectory
clustering. In the application of image segmentation, our
submodular maximization model is used to select foreground
superpixels. While in the motion trajectory clustering applica-
tion, our submodular maximization model can choose repre-
sentative trajectories with good quality as clustering centers.
Our knapsack constraint in these applications can obtain better
performance, since it adds more prior information explicitly.
The advantages of our new approach compared to the existing
models are summarized in Table I.

For convenience, a set of submodular function can be
treated as a function over n-dimensional binary column vector
variables x ∈ {0, 1}n. Differing from existing formulations (4)
and (5), the proposed submodular energy and its constraint are
defined as:

F (x) = Ux− xTPx, g(x) = Cx (6)

where U and P are restricted to Z+1×n and Nn×n for numeri-
cal optimization but could be in R+ in theory, and C ∈ N1×n.
The constraint g(x) ≤ K is a knapsack constraint and more
general than the cardinality constraint of the previous facility
location and information theoretic models. Specifically, we set
C as an all-one vector, and the knapsack constraint Cx ≤ K
is degenerated into a cardinality constraint ||x||0 ≤ K.

A generic method for approximately maximizing con-
strained submodular functions is the greedy algorithm [1],
[3]. The greedy algorithm always has performance guarantee
1−1/e, when the objective submodular function is monotone.
The knapsack constraint g(x) ≤ K subsumes the cardinality
constraint, i.e., setting g(x) = 1Tx recovers the cardinality
constraint. Some algorithms [26], [7] are designed specifically
for submodular maximization with knapsack constraints. How-
ever, the objective function f(x) in these methods must be a
polymatroid function, which is monotone and non-decreasing.
In order to solve more interesting vision problems, we develop
a new method to maximize submodular functions of (6) by
dynamic programming. Our framework includes more general
constraints than the cardinality constraint, and can maxi-
mize both monotone and non-monotone quadratic objective
functions. Additionally, our optimizing method obtains more
accurate solutions than the greedy algorithm.

In the context of previous work on submodular maximiza-
tion, our main contributions are summarized as follows:
• A new framework of submodular functions with a more

general knapsack constraint is presented. This framework
is different from the facility location and entropy model,
which can deal with both monotone and non-monotone
quadratic objective functions and thus enriches the field
of submodular optimization in computer vision.

• A novel submodular maximization method based on
dynamic programming is proposed. Experimental results
show that our new optimization method can outperform
the classic greedy algorithm.

• Our new framework is applied to two computer vision
tasks: image segmentation and video trajectory clustering.
Experimental results demonstrate that our new framework
can achieve competitive performance.

II. RELATED WORK

In this section, we review some existing work related to
submodular optimization and its applications. The popular
optimization method for maximizing a submodular function
with a constraint is the greedy algorithm [1], [3]. The greedy
algorithm performs iteratively, where each element in the
solution vector x is set to 0 initially. In each iteration, only one
element of x is given label 1 so as to obtain the largest energy
marginal gain, while keeping the total cost under its limit K.
The greedy algorithm can support arbitrary constraints, such
as the case where the constraints satisfy a matroid.

Different from the greedy algorithm, more approaches aim
at maximizing submodular energy with a specific form or limi-
tation. Calinescu et al. [15] proposed a constrained submodular
maximization method with a higher accuracy than the greedy
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algorithm for a positive non-decreasing submodular function.
A submodular function f is positive, if f : 2N → R+.
Stochastic-Greedy [30] is a linear-time algorithm for maxi-
mizing a general monotone submodular function subject to a
cardinality constraint. Based on the greedy algorithm, some
methods focused on achieving better performance on large-
scale data. For example, Wei et al. [35] designed a multi-
stage algorithm to yield 1000 times speedup. However, these
methods required the submodular energy to be monotone and
subject to cardinality constraints. Feige et al. [16] proposed
the constant-factor approximation algorithm for maximizing
non-negative submodular functions. In particular, they design
a deterministic local search with 1/3-approximation and a
randomized 2/5-approximation algorithm. Caprara et al. [4]
obtained the exact solution of the quadratic knapsack problem.
However, it requires the coefficients of pairwise terms in the
objective functions should be non-negative, which means the
energy is not submodular. Sviridenko et al. [9] maximized
the non-decreasing submodular energy. Both [23] and [19]
focus on maximizing the non-monotone submodular function
with knapsack constraints. However, these methods assume the
function is non-negative. Our method can deal with negative
and non-negative quadratic submodular objective functions,
which can be non-monotone.

The proposed method also needs the energy and the con-
straint to satisfy specific forms in (6). However, our solution
is more accurate than the greedy algorithm. Unlike others, our
method is not based on the greedy algorithm, the stochastic
form or continuous transformation. We employ dynamic pro-
gramming to maximize the submodular energy functions to
enrich the optimization methods of submodular functions.

As for the applications of submodular functions in computer
vision, an increasing number of researchers are working on
this field with a huge progress. Some algorithms adopt the
facility location to formulate the problem. Jiang et al. [27]
and Zhong et al. [40] used submodular maximization to obtain
image saliency. They build a facility location form energy
to select the superpixels which are easy to determine their
accurate saliency values. Then precise saliency values of those
superpixels are obtained and diffused to all pixels of the whole
image according to the appearance model. Zhu et al. [33]
designed a submodular function to perform object detection.

Other important works solve submodular optimization by
different methods. Xu et al. [42] presented a gaze-enabled
egocentric video summarization method by using the con-
strained submodular maximization algorithm. Yang et al. [41]
measured the entropy gains of images to model the retrieval
problem. Liu et al. [38] designed a submodular energy func-
tion with entropy rate, and maximize it to extract superpixels
by clustering pixels. Qian et al. [50] applied a multi-objective
evolutionary algorithm to maximize monotone k-submodular
functions. Balkanski et al. [46] explored the problem of
minimizing a submodular function from training data. They
show some submodular functions cannot be minimized when
given access to the polynomially-many samples.

Our new quadratic submodular maximization framework is
further adopted to solve two vision problems: image segmen-
tation with user interaction and motion trajectory clustering for

videos. Some basic Interactive segmentation methods, includ-
ing graph cuts [10] and random walks [14], have shown their
effectiveness. By contrast, motion trajectory clustering for
videos is a relative new problem. Trajectories can describe the
motion information of all main objects in videos. Therefore,
it is important to obtain their clusters for modeling all moving
entities in the video. Many popular methods such as [18], [28],
[36], [45] have been proposed to solve this problem.

III. OUR APPROACH

In this section, we first introduce the typical 0/1 knapsack
problem and its extension in Section III-A. Then, in Section
III-B, we generalize the knapsack problem to our new model
for maximizing a quadratic submodular energy with a knap-
sack constraint. And we design its optimization method based
on dynamic programming. Finally, we adopt a solution range
reduction process to accelerate our algorithm in Section III-C.

A. Typical 0/1 knapsack problem and its extension

First, we introduce the typical 0/1 knapsack problem. As-
sume we have a set of n items and a knapsack with a limited
carrying capacity M . Each item i has mass mi and value vi.
We need to find the collection of items with a maximum total
value while keeping the total weight no larger than the given
limit M . Define a vector x = [x1, x2, . . . , xn]

T ∈ {0, 1}n,
where xi = 1 indicates that item i is included in the collection
and xi = 0 indicates that it is excluded. Then, the 0/1 knapsack
problem can be formulated as:

x∗ = argmaxx F (x)
s.t. g(x) ≤M (7)

F (x) = v1x1 + v2x2 + · · ·+ vnxn

g(x) = m1x1 +m2x2 + · · ·+mnxn

vi > 0, mi > 0, i = 1, 2, . . . , n

(8)

where x∗ is the optimal solution. The typical 0/1 knapsack
problem is NP-hard. An effective method for solving the
0/1 knapsack problem is dynamic programming. Because
the function g(x) is linear, the problem in (7) is actually
submodular maximization with a knapsack constraint. Inspired
by the above analysis and the nonserial dynamic programming
in [8], we will solve a more general problem of maximizing a
quadratic submodular energy subject to a knapsack constraint
approximated by dynamic programming in section III-B.

Let us expend the objective submodular function F (x) to
the following form, and then adopt the dynamic programming
to maximize it as follows:

F (x) =

n∑
i=1

vixi −
n−1∑
i=1

sixixi+1 (9)

where si is a coefficient.
According to the property of diminishing returns, if a sub-

modular function contains quadratic terms, their coefficients
must be non-positive. Therefore, we have si ≥ 0 in (9).
According to the definition of dynamic programming, we need
to build the subproblem of this maximization problem. Let
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Bi[xi,Mi] denote the maximum energy of the best partial
assignment of {x1, . . . , xi−1}, when the value of xi is fixed
and the constraint g(x1, . . . , xi) ≤ Mi is satisfied. This can
be formulated as:

Bi[xi,Mi] = max
Y

F (x1, . . . , xi−1, xi)

s.t. g(x1, . . . , xi−1, xi) ≤Mi

Y = {x1, . . . , xi−1, xi}\{xi}
(10)

That is, Bn[xn,Mn] = maxxn
{F (x) : g(x) ≤ M},

and Mn = M . Hence, the dynamic programming recursion
becomes:

Bi[xi,Mi] =

{
ψi(xi,Mi), if mixi ≤Mi

−∞, otherwise

ψi(xi,Mi) = vixi +max
xi−1

{
Bi−1[xi−1,Mi−1]

− si−1xixi−1
}

Mi−1 =Mi −mixi

(11)

The smallest sub-problem can be directly solved as:

B1[x1,M1] =

{
v1x1, if m1x1 ≤M1

−∞, otherwise
(12)

The optimal solution x∗ is obtained by the following
iteration, and we get the value of xi after determining the
value of xi+1:

x∗n = argmax
xn

Bn[xn,M ]

x∗i = argmax
xi

{
Bi[xi,Mi]− sixixi+1

}
, for i < n

(13)

B. Quadratic submodular maximization with a knapsack con-
straint

We further generalize the objective function F (x) and
constraint function g(x) in (7) to:

F (x) =

n∑
i=1

vixi −
∑

1≤i<j≤n

sijxixj

g(x) =

n∑
i=1

mixi

vi > 0, mi > 0, sij ≥ 0

(14)

This maximization problem is no longer a knapsack prob-
lem. It can be rewritten in a compact matrix form as

x∗ = argmax
x

Ux− xTPx,

s.t. Cx ≤M
(15)

where U = [v1, v2, . . . , vn], C = [m1,m2, . . . ,mn], and the
element (i, j) of matrix P is sij . (15) has the same pattern as
we put forward in (6). And all the elements in vector/matrix
U , P , c and M are non-negative integers. The proofs for the
submodularity of function F (x) in (8), (9) and (14) are given
in Appendix II.

We can build a graph to abstract a quadratic submodular
energy. Each variable xi can be treated as a vertex and
quadratic term sijxixj as an edge connecting vertexes i and j

with a weight sij . The extracted graph of (9) is a line (see Fig.
1(b)), and we can easily find a sequence of vertexes to build
the subproblem for dynamic programming. However, using
the same process, the related graph of (14) is more generic
and likely to contain cycles. We overcome this obstacle by
redefining a more general recurrence formula. Before this, we
need to extend the definition of Bi[xi,Mi] in (10) with a new
representation Bi[E,Mi]

Bi[E,Mi] = max
Y

F (x1, . . . , xi)

s.t. g(x1, . . . , xi) ≤Mi

Y = {x1, . . . , xi}\E
(16)

where E is a variable subset of {x1, . . . , xi}. Bi[E,Mi]
represents the maximum value of best assigned labels of the
first i items, where the values of variables in set E are fixed.

Finally, we design the new recurrence formula as follows:

Bi[{xi},Mi] =

{
ψ′i(xi,Mi), if mixi ≤Mi

−∞, otherwise

ψ′i(xi,Mi) = vixi + max
N (xi)

{
Bi−1[N (xi),Mi−1]

−
∑

xj∈N (xi)

sijxixj

}
Mi−1 =Mi −mi−1xi−1

N (xi) = {xj | j < i, sij > 0}

(17)

where N (xi) is a set of variables. It contains all variables with
a smaller subscript than i and existing pairwise terms with xi.
Bi−1[N (xi),Mi−1] represents the maximum value of the best
assignment of labels of the first i− 1 items, where the values
of variables in N (xi) are fixed. Mathematically, we have

Bi−1[N (xi),Mi−1] = max
Y

F (x1, . . . , xi−1)

s.t. g(x1, . . . , xi−1) ≤Mi−1

Y = {x1, . . . , xi−1} \ N (xi)

(18)

The main motivation of using quadratic submodular energy
function is that it can represent more computer vision problem
than (8) and (9). Energy in (8) only contains unary terms,
however, most of vision problems need quadratic terms to
model. The quadratic terms in (9) are limited, since the
variables need to be i and i + 1. The proposed quadratic
submodular function has extended these two limitations, which
can model more vision problems well.

Fig. 1(c) gives an example graph, which is extracted from
an objective function with four variables F (x1, x2, x3, x4):

F (x1, x2, x3, x4) = U · [x1, x2, x3, x4]T−
{s12x1x2 + s23x2x3 + s34x3x4 + s14x1x4}

(19)

The unary parameter U does not relate to building the graph,
and it does not contain specific meaning in this equation and
can be formed by arbitrary non-negative integers.

According to (17), we have:

N (x4) = {x1, x3}

ψ′4(x4,M) = v4x4 + max
x1,x3

{
B3[N (x4),M −m4x4]

− s14x1x4 − s34x3x4
} (20)
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(a) (b) (c)

Fig. 1. The graphs extracted from objective functions (7), (9) and (19).

In many applications, the set N (xi) contains a large number
of elements, which will make the computational cost of (17)
increasingly expensive. We address this problem by decreasing
the number of variables in each recurrence and building the
approximated iterative equations as follows:

Bi[xi,Mi] =

{
ψnew
i (xi,Mi), if mixi ≤Mi

−∞, otherwise

ψnew
i (xi,Mi) ≥ vixi +max

xi−1

{
Bi−1[xi−1,Mi−1]

− s(i−1,i)xixi−1
−

∑
xj∈N (xi)\{xi−1}

sijxiXj(xi−1,Mi−1)
}

Xj(xi,M) = argmax
xj∈{x1,...,xi−1}

Bi[xi,M ]

(21)

where Xj(xi,M) ∈ {0, 1}, and it stands for the value of xj
when the maximum value Bi[xi,M ] is obtained from the first
i items with the label of xi fixed.

Similar to (13), the value of Xj(xi,M) can also be calcu-
lated via dynamic programming. In every iteration, we need
to calculate Xj(xi,M) for solving more general submodular
energy function (14) by our new approximate algorithm.

Algorithm 1: Knapsack constrained submodular maximization

1. Input: f(·), g(·) and M
2. for m = 1 :M
3. Calculate B1[x1,m] by (12)
4. end for
5. for i = 2 : n
6. for m = 1 :M
7. Find all the elements j,

where j < i and sji > 0
8. Calculate Xj(xi−1,m− vixi)

and Bi[xi,M ] by (21)
9. end for
10. end for
11. Calculate x by (13)
12. Output: x and maxxn

Bn[xn,M ]

According to the example of (19) and the related graph in

Fig. 1 (c), we obtain its new iterative equation as follows:

ψnew
4 (x4,M) ≥ v4x4 +max

x3

{
B3[x3,M3]

− s43x4x3 − s14x4X1(x3,M3)
}

M3 =M −m4x4

X1(x3,M3) = argmax
x1

B3[x3,M3]

(22)

Algorithm 1 gives the pseudo-code of our submodular
maximization method. Since we obtain all the energies when
Mi gets its value from 0 to M , it considers all the situations
when the variables get different values. In the example of (19),
we first adopt DP in Algorithm 1 to obtain the maximum of
F (x1, x2, x3, x4) without knowing the specific value of x4.
Then, the value of x4 is obtained by (13). Thus, the term
M −m4x4 in (22) can be calculated after that.

Our function is solved by dynamic programming, which is
not optimized by iterations. Thus, our method can be judged
as convergent or not. And our time complexity is O(nM)
according to the property of dynamic programming, where n
is the number of variables.

C. Solution range reduction
In our experiments, we found that dynamic programming is

based on heavy heuristics, where the computational cost of one
recursion is high with lots of related variables, especially when
matrix P of the pairwise term in (15) is not sparse. Therefore,
we adopt an efficient method [5] to further reduce the range
of solution prior to performing the dynamic programming.
This is originally designed for obtaining minimum energy of a
supermodular function without a constraint. The solution range
reduction is employed on the original submodular energy, and
it will confirm some values of a subset of the variables. We
get a new function with fewer variables and a more sparse
pairwise parameter P . The new function is then optimized by
our submodular maximization method. And this procedure is
far more efficient than performing the maximization on the
original submodular function.

For a submodular function f(T ), T ⊆ V , V is the ground
set. Considering two subsets of V : S and L, if they satisfy

∅ ⊆ S ⊆ L ⊆ V, (23)

We define a set of subsets called subinterval as follows:

[S,L] = {T |S ⊆ T ⊆ L} (24)
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The maximum value of function f(T ) on interval [S,L] is
denoted by f∗[S,L]:

f∗[S,L] = max
T∈[S,L]

f(T ) (25)

Function f is submodular on [S,L], if ∀β, γ ∈ [S,L], and
it has the property that f(β) + f(γ) ≥ f(β ∪ γ) + f(β ∩ γ).
Expressions of forms S \ {k} and S ∪ {k} can be written as
S − k and S + k.

THEOREM 1. Let f be a submodular function on interval
[S,L] ⊆ [∅, V ], and let k ∈ L\S. Then the following assertions
hold:

(a). f∗[S,L− k]− f∗[S + k, L] ≥ f(S)− f(S + k)

(b). f∗[S,L− k]− f∗[S + k, L] ≤ f(L− k)− f(L)
(26)

Proof. (a) Let γ ∈ [S,L−k] with f(γ+k) = f∗[S+k, L].
It then follows from the definition of submodularity that:

f(S + k) + f(γ) ≥ f((S + k) ∪ γ) + f((S + k) ∩ γ)
= f(γ + k) + f(S)

(27)

Hence, using the above derivation, we have:

f∗[S,L− k] ≥ f(γ) ≥ f(γ + k) + f(S)− f(S + k) (28)

Thus, putting −f∗[S + k, L] at both sides of (28), we get:

f∗[S,L− k]− f∗[S + k, L] = f∗[S,L− k]− f(γ + k)

≥ f(S)− f(S + k)
(29)

The proof of (b) is similar.
COROLLARY 1. Let f be a submodular function on

interval [S,L] ⊆ [∅, V ], and let k ∈ L \S. Then the following
assertions hold:

(a). First Preservation (FP) Rule: If f(S + k) ≤ f(S), then
f∗[S,L] = f∗[S,L− k] ≥ f∗[S + k, L].

(b). Second Preservation (SP) Rule: If f(L − k) ≤ f(L),
then f∗[S,L] = f∗[S + k, L] ≥ f∗[S,L− k].

Proof. From Theorem 1.(a) we have that: f∗[S,L − k] −
f∗[S + k, L] ≥ f(S)− f(S + k). By assumption f(S + k) ≤
f(S), f∗[S,L − k] ≥ f∗[S + k, L], and thus f∗[S,L] =
f∗[S,L− k]. The proof of (b) is similar.

Corollaries (a) and (b) can only reduce the solution range of
maximizing a submodular energy function without any con-
straints. However, our framework in (15) contains a constraint.
Because a part of solution may not satisfy the constraint, these
two determination methods cannot be used directly. As a re-
sult, when one variable can be ensured by corollary (a) or (b),
we determine whether this variable can satisfy the constraint.
If not, we terminate the range reduction procedure. Our new
maximization algorithm for (15) is given in Algorithm 2.

The steps before line 17 in Algorithm 2 belong to the range
reduction, which can get a partial solution of the original
problem. Line 17 in Algorithm 2 is to solve the new problem
with a smaller scale. For example, we consider the following
maximization problem with n variables:

maxx1 + 2x2 − x1x2 − 3x2x3 + f(x3, . . . , xn),

s.t. 2x1 + 3x2 + g(x3, . . . , xn) ≤ 20
(30)

TABLE II
THE AVERAGE MAXIMUM ENERGIES OF 1000 FUNCTIONS BY THE GREEDY

ALGORITHM, OUR ALGORITHM 1 AND ALGORITHM 2, RESPECTIVELY.

Greedy Algorithm 1 Algorithm 2
Average energy 72.920 77.439 77.408
Average time 0.0537 0.0569 0.0557

Algorithm 2: The final algorithm with range reduction

1. Input: f(.), g(.) and M
2. S = ∅, L = V
3. while
4. P0 = P1 = ∅
5. for xi ∈ L \ S
6. If f(S + xi) ≤ f(S)
7. P0 = P0 + xi
8. If f(L− xi) ≤ f(L)
9. P1 = P1 + xi
10. end for
11. If g(S ∪ P0) ≤M
12. Update f(.), g(.) and M
13. S = S ∪ P0, L = L ∪ P1

14. else
15. break
16. end while
17. Get the updated f(.), g(.) and M
18. Use Algorithm 1 to get the final solution

We suppose two variables are used to obtain their solutions
(x1 = 0, x2 = 1) by the range reduction step, then the updated
problem is defined as follows:

max−3x3 + f(x3, . . . , xn),

s.t. g(x3, . . . , xn) ≤ 17
(31)

If the objective submodular energy is monotonically de-
creasing, we can get its solution directly by the range reduction
step. If the energy is not monotone, the range reduction step in
Algorithm 2 can get the partial solution, and thus decrease the
scale of the original problem. Our Algorithm 1 by dynamic
programming can maximize a new function with less variables
and obtain the solution of original energy efficiently. The
experimental results in Fig. 2 (a) and Table II will demonstrate
the time acceleration of this range reduction step.

IV. EXPERIMENTAL RESULTS

In this section, we first build synthetic submodular functions
with the MNIST dataset as their parameters. By counting
the maximum energies of these functions, we compare our
optimization methods (with/without the range reduction step)
with the classic greedy algorithm. Then, we apply our sub-
modular maximization model to two vision problems: image
segmentation and motion trajectory clustering.
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P

(a)

(b)

Fig. 2. Comparison of time cost and accuracy for our Algorithms 1, 2 and the
greedy algorithm on synthetic data.(a) The computational time of Algorithms 1
and 2. When the sparsity of matrix P in (15) decreases, these two methods cost
more time. However, the range reduction step in Algorithm 2 will decrease the
number of variables before DP. Therefore, it takes less time than Algorithm 1.
(b) Illustration of getting maximum energies of 1000 synthetic functions by
the greedy algorithm, Algorithms 1 and 2. In most cases, both our Algorithm
1 and Algorithm 2 outperform the greedy algorithm.

A. Synthetic data experiment

In the first experiment, we build 1000 submodular energy
functions to evaluate the proposed method with random ini-
tialization, whose random sequence is taken from a public M-
NIST dataset (http://yann.lecun.com/exdb/mnist). This dataset
contains 70000 handwriting digits in random order and their
features, and it is originally used for character recognition.
Since the parameters for matrices P , U , C and M in (15)
of our model need to be non-negative numbers, the number
labels of digits (from 0 to 9) in the MNIST dataset are suitable
to build submodular functions. The numbers in this dataset
are filled in parameter matrices P , U , C and M of our
testing energy functions. We divide all 70K numerical digits
into 1000 data blocks, where 70 numbers in each block are
used to build one submodular function and its constraint. The
procedure of building a testing submodular energy with one

data block is provided in Appendix III. By maximizing these
synthetic functions, we compare our methods without/with the
range reduction step (Algorithm 1/Algorithm 2) and the classic
greedy algorithm.

The reason of choosing a public dataset instead of random
numbers to build synthetic functions is that it is easy to re-
implement. We use the MNIST dataset because it contains
digits from 0 to 9 with almost equal numbers. We compare
the average maximum energies and time of 1000 synthetic
functions of the greedy algorithm with our methods (with-
out/with the range reduction step) in Table II. Our methods
achieve higher average energy than the greedy algorithm,
which means the proposed DP process obtains more accurate
solutions. In these results, our Algorithm 2 obtains larger
energy values than the greedy algorithm in 331 functions. In
each iteration of the greedy algorithm, only one variable is
set to 1, and it will never be changed in the later iterations.
Therefore, in many situations, the greedy algorithm will be
stuck in local maxima. While in our dynamic programming
method, we keep track of maximum values in each iteration,
as parameter M increases from 0 to M . As a result, dynamic
programming has a larger chance to jump out of the local
maximum to get a larger energy. The range reduction step can
reduce the computational cost of our DP algorithm. Since the
average energy of Algorithm 2 is just slightly smaller than
that of our original Algorithm 1, we then adopt the more
efficient Algorithm 2 as our optimization method to solve
vision problems in the later experiments. As shown in Fig.
2(a), the range reduction step in Algorithm 2 reduces the
computational time enormously. The time difference between
Algorithm 1 and Algorithm 2 is not large in Table II, since the
matrix P in this synthetic data experiment is not sparse. Fig.
2(b) provides the maximum energies of these three methods
from all 1000 functions, and both Algorithms 1 and 2 perform
better than the greedy algorithm.

Now we give another example to demonstrate the compar-
ison of our method with greedy algorithm. The function (43)
in Appendix III is the submodular function, and its knapsack
constraint is built by the first data block. Its maximum energies
are 14 and 32, which are optimized by greedy algorithm and
our DP method with range reduction, respectively. The time
costs of greedy algorithm and our DP method are 0.000131
and 0.001057, respectively. Therefore, our method has the
comparable computational time to achieve a higher energy,
and obtains a more accurate solution than greedy algorithm.

B. Interactive image segmentation
Now we apply our submodular maximization model to

image segmentation with user strokes. A lot of segmentation
methods have been proposed [10], [14], [6], [49], [13], [29],
[32]. All these segmentation methods adopted additional prior
information or complicated assumptions to get better results.
The proposed segmentation method with the submodular max-
imization does not rely on sophisticated features. We only add
a knapsack constraint explicitly to our new submodular energy
to increase the segmentation accuracy. Thus, we compare our
method with classic graphcut and random walk for implemen-
tation simplicity.
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Fig. 3. Segmentation results by the Graphcut (3rd row), random walk (4th row) and the proposed submodular model (5th row). The first and second rows
are the input images and user strokes from the GrabCut dataset (column 1∼3) and the selected ‘BSD-70’ dataset (column 4∼7).

We first obtain the set of superpixels by SLIC [24]. One
superpixel i with the label 1 or 0 means that superpixel belongs
to foreground or background. According to the segmentation
model of graphcut, if two adjacent superpixels present differ-
ent color features, they should be assigned to different labels.
Therefore, our quadratic submodular maximization is adopted
to build the following energy with variables x:

F (x) =
∑
i

{(Fg(i)− Bg(i))xi + Bg(i)}

+
∑

(i,j)∈N

diff(i, j){λdxi(1− xj) + λd(1− xi)xj

− λ1xixj − λ0(1− xi)(1− xj)}

=
∑
i

(Fg(i)− Bg(i))xi

+
∑

(i,j)∈N

diff(i, j){(λd + λ0)(xi + xj)

− (2λd + λ1 + λ0)xixj}+ o
(32)

where Fg(i) and Bg(i) are probabilities of superpixel i belong-
ing to foreground or background, which are calculated by the
Gaussian Mixture Model (GMM) obtained from user scribbles.
o is a constant term, which can be omitted when maximizing
the above energy. N is the set of all adjacent superpixel pairs.
diff(i, j) is the color difference of superpixels i and j. λ1, λ0

and λd are three parameters for balancing unary and pairwise
terms. In our experiments, we set (λ1, λ0, λd) = (1, 0, 0).
Different from the classic Graphcut [10] or random walk
[14] methods, our submodular model adds extra constraints
explicitly in order to include more prior information.
i) We can restrict the maximum number of foreground super-
pixels. Therefore, a cardinality constraint can be added to the
original problem (32):

g(x) =
∑
i

xi ≤ K (33)

ii) We can assume superpixels at the center of an image have a
larger probability to be foreground. As a result, the following
constraint can obtain a better segmentation result:

g(x) =
∑
i

dist(i)xi ≤ K (34)

where dist(i) describes the Euler distance of superpixel i to the
center of an image. And constant K is also used to constrain
the total number of foreground superpixels.

We use the GrabCut dataset and the randomly selected
70 images from the BSD dataset to show the effectiveness
of our new model in (32) with a knapsack constraint in
(34). The GrabCut dataset only includes 20 images, and the
user strokes are next to the foreground objects. In order to
demonstrate the effectiveness of segmentation, we randomly
select 70 images including more complex scenes from the BSD
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TABLE III
THE AVERAGE ACCURACY OF THE GRAPHCUT, RANDOM WALK, SUBRW

AND THE PROPOSED METHOD ON THE GRABCUT AND ‘BSD-70’
DATASETS.

Graphcut Random walk SubRW The proposed
Grabcut 98.15 % 98.43 % 98.43 % 98.91 %
BSD-70 80.78 % 80.52 % 80.94 % 81.36 %

Fig. 4. An illustration of failure case with our method. The left image is an
input image from ‘BSD-70’ dataset and the middle one is its corresponding
user stroke. Our segmentation result is shown in the right image.

dataset. As shown in Fig. 3, we compare our model with two
optimization methods: Graphcut [10] and random walk [14].
We also measure accuracies of these methods on the whole
GrabCut and our ‘BSD-70’ dataset, which are presented in
Table III. All three methods can obtain high accuracies on the
GrabCut dataset, which mostly includes the simple scenes of
foreground objects. In contrast, our submodular segmentation
method obtains better accuracies on the ‘BSD-70’ dataset with
more complex scenes. The extra constraint in our model makes
the center superpixels to obtain a larger probability to be
selected as foreground, and thus the proposed method achieves
better segmentation results.

We also illustrate a failure case in Fig. 4. In this case, there
exist some fragments of background, such as the fragments
of stone. The color of these fragments is very similar with
the foreground object so that our method cannot distinguish
them from foreground. The reason may be that the prior model
GMM fails to discriminate the similar background and fore-
ground. Actually, our energy function (32) contains data term
(storing global information of foreground and background, and
smooth term (including diff(i, j)) used to keep consistent
among neighbors. In this failure case, these fragments of the
stones are too similar with the foreground in the view of GMM
model, and so that the data term plays the main role in energy
function. In the future, better appearance model (such as deep
model [20], [34]) will reduce the data term in these situations.

C. Motion trajectory clustering

Most of the popular methods for moving object segmenta-
tion [28], [36], [39], [45], [44], [48], [37] are based on the
motion trajectory clustering, and many researchers focused
on improving the accuracy of the trajectory clusters. Instead
of applying clustering directly on trajectories, we aim to
select better clustering centers from all the trajectories. Our
submodular energy model first finds the centers of small

TABLE IV
RESULTS OF SC, MC AND THE PROPOSED METHOD ON THE FBMS-59

DATASET.

Training set D P R F O
SC [36] 3.71 % 82.33 % 64.26 % 72.27 % 17/65
MC [45] 3.47 % 86.79 % 73.36 % 79.51 % 28/65

Ours 4.64 % 86.74 % 74.15 % 79.95 % 31/65
Test set
SC [36] 3.95 % 76.15 % 61.11 % 67.81 % 22/69
MC [45] 3.72 % 86.81 % 67.96 % 76.24 % 25/69

Ours 4.53 % 87.09 % 68.30 % 76.57 % 26/69

trajectory clusters, which are called trajectory fragments. Then,
a aggregation step is used to merge those fragments into the
final trajectory clusters. T = {ti, t2, · · · , tn} denotes the set of
all the initial trajectories, where n is the number of trajectories.
We assume the similarity of ti and tj as w(i, j), and all
those similarity measures construct an affinity matrix W . A
submodular function is built to select a set of representative
trajectories S with good quality, and the trajectories in S
will be used as the clustering centers. We define a variable
xi ∈ {0, 1}, and xi = 1 denotes that ti should be included
in S. Therefore, the set S is obtained by maximizing the
following F (x) subject to g(x) ≤ K:

F (x) =
∑
i

q(i)xi − λ
∑
i,j

w(i, j)xixj

g(x) =
∑
i

xi ≤ K
(35)

where q(i) measures the quality of ti. A smaller q(i) indicates
that ti may be connected by incorrect optical flows.

When generating trajectories, we judge whether the forward
and backward optical flows are matched. If two optical flows
are mismatched, the trajectory is connected by incorrect optical
flows. λ is a parameter for balancing these two terms, which is
set to 2 in our experiments. By maximizing this energy, we get
the selected set of centers. Then, we distribute every trajectory
to one center with the largest similarity, using the affinity
matrix W . And all trajectories assigned to one center will
build a trajectory fragment. Later, we employ the fast bottom-
up aggregation clustering method to get the final clustering
result by merging all fragments. In our experiments, we only
use Ns trajectories to select the clustering centers to reduce
computing load. These trajectories are sampled every N/Ns

trajectories from all N trajectories.
We compare our submodular maximization model with two

state-of-the-art trajectory clustering algorithms: the Spectral
Clustering based method (SC) [36] and Minimum Cost Multi-
cuts (MC) [45] on the FBMS-59 dataset. The authors in [45]
proposed several variants for experiments. Here we select the
version ‘Multicut on enriched graph (MCe) sparse (4), prior
0.5’ for comparison. The FBMS-59 dataset contains 59 videos
with ground truths. Fig. 5 gives two representative clustering
results by these methods. In video ‘cars2’ (the first row, left),
both SC and MC regard the two foreground moving cars as
one motion entity. Because the motion difference of these two
cars is too small to be detected by their spectral clustering or
cut algorithms. However, our method divides them into two
moving objects, since these two cars have different clustering
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Fig. 5. Trajectory clustering results by the SC method [36], the MC method [45] and our submodular maximization approach. The video frames in 1st row
are taken from ‘car2’ and ‘ducks01’. The 2nd row is results from SC; the 3rd row is results from MC. Our results are shown in the 4th row. Our method can
detect different clusters of moving objects, which is better than both SC and MC.

centers, which are obtained by maximizing (35). As for video
‘ducks01’ (the first row, right), SC only divides all ducks into
two clusters, and MC cannot separate them correctly. Our
method can select the proper trajectory clustering centers with
good quality. All ducks have been distributed to more than one
centers, and then four ducks can be correctly segmented out
in our results. The leftmost two ducks have similar motions
and textures, thus they are treated as one class.

Following the measurements in [45], we also use five criteria
to illustrate the performance of those results quantitatively,
which include the average region density (D), average pre-
cision (P), average recall (R), F-measure (F) and extracted
objects with F ≥ 75% (O). The numeric comparison is shown
in Table IV. Our trajectory clustering method selects the most
representative trajectories with good quality as the centers of
clusters, which means the ‘bad’ trajectories (connected by
incorrect optical flows) will not be selected. Every trajectory is
assigned to its nearest center, as a result, the ‘bad’ trajectories
will not affect the clustering results. Therefore, our method
achieves better clusters with accurate classification and less
noise around the moving objects.

It is worth to mention that there are some clustering algo-
rithms based on submodular optimization, such as [12], [38].
Zhao et al. [12] formulate clustering as a multiway partition
problem to solve it by minimizing a submodular energy. These
two methods are based on submodular minimization while our
method is based on submodular maximization framework. Liu
et al. [38] build a submodular function based on entropy-rate
and maximize it to get the clusters, which is further applied
to superpixels. However, this method requires the number of
clusters and features as inputs. In motion trajectory clustering,
the number of clusters usually can not be determined, and we
only obtain the adjacent matrix built by similarities between
motion trajectories. Therefore, these methods are not suitable

for solving the motion trajectory clustering, and they are more
appropriate for general data clustering.

V. CONCLUSION

In this paper, we proposed a new class of submodular
maximization model: a quadratic submodular energy function
subject to a knapsack constraint. Different from the facility
location and information theoretic models, our model contains
a more general knapsack constraint, which is able to represent
more vision prior information. Our maximization algorithm
was developed using the principle of dynamic programming
where we approximated the recurrence formula to make the
problem tractable (Algorithm 1). We then introduced the
solution range reduction step (Algorithm 2) to obtain more
accurate results than the standard greedy algorithm. The utility
of our approach was demonstrated by designing novel energies
for the tasks of interactive image segmentation and selecting
cluster centers for motion trajectories. Experimental results of
image segmentation demonstrate that our method out-performs
the classic algorithms of graphcut and random walk. Moreover,
our framework achieves better performance than state-of-the-
art methods on the motion trajectory clustering task. In the
future, we plan to investigate more computer vision applica-
tions based on our submodular optimization framework. In
addition, we will explore the possibility of adopting dynamic
programming to solve more non-submodular energies and
multi-objective optimization problems [47].

APPENDIX I: THE EXPRESSIONS OF H(·) AND M(·) IN (5)
OF SECTION I

Entropy rate function H(·) is defined on a random walk of
a graph G = (C, V ). V is the ground set of the set function
H(·), and it represents the set of all edges in graph G. C is
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Fig. 6. An illustration of building a quadratic submodular function subject
to a knapsack constraint by a data block from the MNIST dataset.

the set of all vertices of the graph, and µi(i = 1, 2, . . . , |C|) is
the stationary distribution for this random walk. S is a subset
of V . pi,j(S) is the transition probability from vertex i to j.
As a result, the definition of entropy rate H(·) is:

H(S) = −
∑
i

µi

∑
j

pi,j(S) log(pi,j(S)) (36)

The function of mutual information M(·) between the sets S
and V \S is defined as follows:

M(S, V \S) = H(S) +H(V \S)−H(V ) (37)

whereH(.) is the entropy function. Assume n is the number of
elements in the ground set V , and L is the covariance matrix
Rn×n of V . For S ⊆ V , let LS be the principal submatrix of
L indexed by S. Then, the entropy H(S) is defined as:

H(S) = 1 + log(2π)

2
|S|+ 1

2
log(det(LS)) (38)

where det is the determinant of the matrix.

APPENDIX II: THE SUBMODULARITY OF FUNCTIONS (8),
(9) AND (14) IN SECTION III

Definition: The energy functions (8), (9) and (14) in Section
III are submodular.

Proof: We assume an energy function with n variables takes
the form of (8):

F (x1, x2, . . . , xn) = v1x1 + v2x2 + · · ·+ vnxn

vi > 0, i = 1, 2, . . . , n
(39)

For any two variables xs and xt, 1 ≤ s < t ≤ n, we have:

F (x1, . . . , xs = 1, . . . , xt = 0, . . . , xn)+

F (x1, . . . , xs = 0, . . . , xt = 1, . . . , xn)−
F (x1, . . . , xs = 0, . . . , xt = 0, . . . , xn)−
F (x1, . . . , xs = 1, . . . , xt = 1, . . . , xn) =

vs + vt − vs − vt = 0

(40)

Therefore, the function (8) is submodular, according to the
definition of submodular energy. We define a binary quadratic
energy function f(xi, xj) = −sxixj , s ≥ 0. It is submodular
since f(1, 0) + f(0, 1) − f(0, 0) − f(1, 1) = s ≥ 0. If
two functions f1 and f2 are both submodular, then α1f1 +
α2f2(α1, α2 ≥ 0) is also submodular. For any two variables
xi and xj , we design a new energy:

F (x1, . . . , xn) =

n∑
i=1

vixi − sijxixj , sij ≥ 0 (41)

The above function (41) is submodular. Functions (9) and (14)
can be viewed as the sum of linear terms and submodular
quadratic terms, and thus they are both submodular.

APPENDIX III: BUILDING SUBMODULAR ENERGIES USING
DIGITS FROM MNIST DATASET IN SYNTHETIC

EXPERIMENT OF SECTION IV

The MNIST dataset contains 70000 numerical digits from
‘0’ to ‘9’. We divide all the numerical digits into 1000 data
blocks, where 70 digits in each block are used to build one
submodular energy function with 10 variables and its con-
straint. The prototype of a quadratic submodular maximization
problem is defined in (15), and 70 digits are used to build the
matrices U , P , C and M as follows. We use the first data
block in MNIST dataset as an example in Fig. 6. This block
is divided into four parts. The first row of 10 digits (red part)
builds the matrix U for 10 variables. The second row of 10
numbers (yellow part) constructs the matrix C in the knapsack
constraint. M is formed by the last two digits of the block
(green part). And a vector Pb from the 21-st to the 68-th digits
of the block (blue part) builds the parameters of the quadratic
term P . Every 3 digits in the vector Pb determine one pairwise
term. In one data triplet, the first 2 numbers are the subscripts
of the quadratic term, and the last number is its coefficient.
For example, digits ‘9’‘1’‘4’ build a term −4x1x9. Finally,
the maximization problem by the first block is obtained as:

maxF (x0, x1, . . . , x9)

s.t. g(x0, x1, . . . , x9) ≤M
(42)

where

F (x0, x1, . . . , x9) = 2x0 + x1 + · · ·+ x9

− 4x1x9 − 7x6x8 − · · · − 3x5x6

g(x0, x1, . . . , x9) = 3x0 + 2x1 + · · ·+ 9x9, M = 43

(43)

REFERENCES

[1] G. L. Nemhauser, L. A. Wolsey and M. L. Fisher, “An analysis of ap-
proximations for maximizing submodular set functions-I,” Mathematical
Programming, vol. 14, no. 1, pp. 265–294, 1978.



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 12

[2] L. Liu, L. Shao, Sequential compact code learning for unsupervised image
hashing, IEEE Trans. on Neural Networks and Learning Systems, vol. 27,
no. 12, pp. 2526-2536, 2016.
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